
Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

Image Steganography in the Frequency Domain

Frederik Imanuel Louis - 13520163

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13520163@std.stei.itb.ac.id

Abstract—Image steganography is an important tool used to

hide sensitive data in images in order to avoid detection by

untrusted parties. This can be done effectively by hiding the data

in the frequency domain of the image, instead of directly

embedding the data inside of the spatial domain of the image.

Keywords—DFT, FFT, DCT, Steganography, Embedding

I. INTRODUCTION

In this information era, communication and data
transmission plays a significant role in our day to day lives.
However, this communication carries with it some risks wherein
malicious actors may attempt to steal or modify transmitted data.
In order to protect this, encryption techniques are needed.

Encryption is a cryptographic technique that aims to protect
information so that it cannot be read or understood by
unauthorized individuals. These techniques however, does not
hide their usage. It is very clear when a data is encrypted and
when it is not.

Despite the effectiveness of encryption in safeguarding
information, its conspicuous nature may inadvertently attract
unwanted attention. The mere presence of encrypted data can
invite malicious actors to focus their efforts on decryption
attempts. Steganography, on the other hand, introduces a subtler
approach to secure communication by concealing the very
existence of hidden data within innocuous carriers.

As information technology gets more and more advances, so
does attacks against data encryption. Hackers and other
malicious actors have found more and more creative ways to
attack and recover encrypted data where present. Thus, there
arises the need of another technique to conceal the very
existence of data transmission, or in other words, methods to
transmit data secretly.

Steganography is another cryptographic technique which
attempts to hide data in other forms of transmission such that it
is hidden. The goal of steganography differs from encryption,
where encryption wants to protect data being transmitted such
that malicious actors cannot alter or steal the data,
steganography strives to hide any indication that data is being
sent. Image steganography, for example, attempts to hide data
by embedding it into an image.

Furthermore, these two methods are sometimes combined,
by first encrypting the data then hiding in using steganography.
This means that even if a malicious attacker somehow finds data
in an image, the data may still be safe as it is encrypted.

This paper will discuss in detail how image steganography
can be done in the frequency domain with two main methods,
the Discrete Cosine Transform and the Discrete Fourier
Transform, and comparing the results with conventional image
steganography.

II. THEORETICAL BACKGROUND

A. Image Formats

An image is a two-dimensional grid of pixels, where each
pixel represents the smallest unit of visual information. These
grids are very small and thousands or even millions of them form
the screen of our phone, laptop, or personal computers. In this
information era, absurd amounts of images are being sent and
received every minute, be it from a website, from social media,
from messaging apps, and many other channels. Thus,
representing image data efficiently and with the best quality is
an important aspect of information theory.

The Bitmap (BMP) image format is a straightforward and
widely supported file format that represents images as a grid of
pixels, without any compression. BMP files are known for their
simplicity and directness in encoding pixel data, making them
suitable for basic image storage and manipulation. Unlike
compressed formats, BMP files contain raw pixel by pixel color
information, resulting in larger file sizes but with the advantage
of maintaining image quality without any loss whatsoever.

In a BMP file, each pixel is typically represented by one or
more bytes, depending on the color depth of the image. Common
color depths include 1, 4, 8, 16, 24, or 32 bits per pixel. The 24-
bit BMP format is commonly used for true-color images,
providing 8 bits for each of the Red, Green, and Blue color
channels. The additional 8 bits in a 32-bit BMP format are often
used for an alpha channel, indicating the level of transparency.

Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

One of the most common and widely supported image
formats is the JPEG (Joint Photographic Experts Group). JPEG
utilizes a lossy compression algorithm, which means that some
data is discarded during compression to reduce file size. While
this results in smaller file sizes, it may lead to a loss of image
quality, particularly in high-compression scenarios. JPEG is
well-suited for photographs and images where a slight loss of
detail is acceptable, for example in website icons or button
images, where efficiency in loading the website is sometimes
more crucial than the quality of the images sent.

In contrast, the PNG (Portable Network Graphics) format
employs lossless compression, preserving all the original image
data. This makes PNG ideal for images that require high fidelity,
such as logos, graphics, or images with transparency. However,
like the BMP file format, there is a trade-off of larger file sizes
compared to JPEG.

Another widely used format is GIF (Graphics Interchange
Format), known for its support of animations through a sequence
of images. GIF uses lossless compression but has a limited color
palette, making it suitable for simple graphics and animations
but less so for detailed photographs.

The TIFF or Tagged Image File Format, on the other hand,
is a versatile format often used in professional settings. It
supports both lossless and lossy compression, and its flexibility
allows for the inclusion of multiple images, layers, and
metadata.

B. Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a mathematical
transformation widely used in signal processing and image
compression. It belongs to the family of Fourier-related
transforms and is particularly renowned for its effectiveness in
representing signals in terms of a set of cosine functions.

The DCT operates on a finite sequence of data points and
transforms it into another set of coefficients, which represent the
signal's frequency components. In the context of image
compression, the DCT is extensively employed to convert
spatial information (pixel values) into frequency information,
allowing for a more efficient representation of the image data.

The DCT is especially associated with image and video
compression standards such as JPEG (Joint Photographic
Experts Group) and MPEG (Moving Picture Experts Group). In
these standards, the DCT is applied to non-overlapping blocks
of an image, converting spatial information into frequency
information for each block. The transformation is reversible,
meaning that the original signal (or image) can be accurately
reconstructed from its DCT coefficients.

The DCT formula is as follows:

And the inverse DCT formula is as follows:

As seen from the formula, DCT does its calculation entirely
in the real domain, and is thus reasonably fast to calculate. In
JPEG compression, these coefficients are quantized to reduce
the precision of the high-frequency components. This
quantization step is a key factor in achieving compression, as it
allows for more efficient representation of the image
information.

 The quantized DCT coefficients are then arranged in a
zigzag order before being encoded and stored. This zigzag
ordering is done because commonly, values closer to the lower
right corner in a quantized DCT matrix are comprised entirely
of zeros, and this facilitates run-length encoding quite well, a
process that groups repeated values for more efficient
compression.

C. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is another
mathematical transformat on used in signal processing, similar
to the Discrete Cosine Transform (DCT). While the DCT is
particularly effective in image and video compression, the DFT
is more general-purpose and is widely applied in various
domains, including signal analysis, communications, and audio
processing.

DFT is extensively used to analyze the frequency content of
signals. By transforming a signal from the time domain to the
frequency domain, one can identify the presence and intensity of
different frequency components. This is crucial in fields such as
telecommunications, audio processing, and vibration analysis.

In signal processing, the DFT is employed for filtering
applications. Filtering in the frequency domain allows for the
removal or attenuation of specific frequency components from a
signal. This is useful for tasks such as noise reduction and signal
enhancement.

Similar to its application in signal processing, the DFT is
used in image processing for tasks such as spatial filtering and
image enhancement. Transforming an image to the frequency
domain allows for the application of filters to specific frequency
components.

Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

In computer vision and image analysis, the DFT is applied to
extract features from images. It helps represent an image in a
way that emphasizes important patterns or structures, making it
useful in tasks like object recognition, such as seperating high
frequency colors from low frequency ones.

The DFT formula is as follows:

 And the inverse DFT formula is as follows:

 Notably from the formula, DFT does its calculation in the
real and imaginary domain. Thus, this calculation is more
expensive than the calculation used and JPEG, and is not used
in representing images.

D. Image Steganography

Image steganography is the technique of concealing

information within an image, allowing for covert

communication between parties in order to avoid detection.

Unlike encryption, which transforms the original information

into an unreadable format, steganography focuses on hiding the

existence of the communicated data. The primary goal is to

embed secret messages within an image in such a way that the

alterations are imperceptible to the human eye and difficult for

automated systems to detect.

The roots of steganography can be traced back to ancient

times, where secret messages were concealed within wax

tablets or tattooed onto the scalps of messengers. However, the

digital era has ushered in new possibilities for steganography,

especially within the realm of multimedia, where images

provide an excellent medium for embedding hidden

information.

The modern history of image steganography can be linked

to the early days of digital communication when researchers

sought ways to secure data transmission without raising

suspicion. Over the years, as digital images became

commonplace, the focus shifted to hiding information within

these visual artifacts.

Least Significant Bit (LSB) steganography is a widely

employed and conceptually straightforward method used in

image steganography. This technique involves the replacement

of the least significant bits of pixel values with the secret data.

Since these bits contribute minimally to the overall intensity of

a pixel, such alterations are imperceptible to the human eye,

making LSB steganography an effective and low-impact

method for concealing information within digital images.

For example, this is a comparison of an image that been

embedded with a secret message (right) and the original

unaltered image (left):

To the naked eye, they look entirely identical. However, as

this LSB method has become extremely common, tools to

detect this has also become increasingly stronger. One simple

yet powerful example is Zsteg.

Zsteg is a command-line tool designed for steganography

analysis in PNG and BMP images. Steganography involves

hiding information within other non-secret data, such as

images, audio files, or text. The zsteg tool, specifically, is

focused on extracting hidden data from the least significant bits

of pixel values in images.

The following is an example usage of zsteg in use on an

image from a cyber security contest:

It can automatically and very easily analyze all possible bit

channels of the image, such as the i-th LSB of every color

channel, and try to extract text from each of them.

III. FREQUENCY BASED STEGANOGRAPHY

A. DFT Steganography Implementation

The DFT image steganography will insert a phrase into the
red channel of an RGB image. This works for images in any
format, but preferably, the output image is saved using a lossless
image format. The following is the DFT embedding
implementation in MATLAB.

filename = "D:\Github\image-

restoration\images\azusachibi.jpg";

message = "secret";

Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

data = double(char(message));

data = [data, 0, 0, 0, 0];

im = imread(filename);

imshow(im);

red = im(:, :, 1);

arr = fft2(red);

compl = imag(arr);

arr = real(arr);

r = size(arr, 1);

c = size(arr, 2);

for i = 1:size(data, 2)

 arr(r, c) = data(1, i);

 c = c - 1;

 if c == 0

 c = size(arr, 2);

 r = r - 1;

 end

end

newfftred = arr + 1i * compl;

newred = real(ifft2(newfftred));

newim = im;

newim(:, :, 1) = newred;

imshow(newim);

 The implementation inserts the ASCII values of the phrase
into the last row of the FFT transformed red channel of the
image. Unlike the LSB method, there is no need to embed the
ASCII as binary, bit per bit, into each pixel value. This is
because the “bottom” part of the frequency domain will show up
less often, and because of that, embedding the raw values will
still not be noticeable to the naked eye. The ASCII values will
only be inserted into the real part of the FFT transform, and the
imaginary part will be restored after the embedding process is
complete.

 The following is some comparisons of the original image
(left) and the embedded image (right):

 Notice that even when embedding ASCII values directly
without splitting it bit by bit, the embedded image still looks fine
at a glance.

B. DCT Steganography Implementation

The DCT image steganography will insert a phrase into the
red channel of an RGB image, similar to the DFT
implementation. This works for images in any format, but
preferably, the output image is saved using a lossless image
format. The following is the DCT embedding implementation in
MATLAB.

filename = "D:\Github\frequency-

steganography\images\pemaloe.png";

message = "secret";

data = double(char(message));

data = [data, 0, 0, 0, 0];

im = imread(filename);

imshow(im);

red = im(:, :, 1);

arr = dct2(red);

r = size(arr, 1);

c = size(arr, 2);

for i = 1:size(data, 2)

 arr(r, c) = data(1, i);

 c = c - 1;

 if c == 0

 c = size(arr, 2);

 r = r - 1;

 end

end

newred = idct2(arr);

newim = im;

newim(:, :, 1) = newred;

imshow(newim);

 The implementation inserts the ASCII values of the phrase
into the last row of the DCT transformed red channel of the
image. Similar to the FFT method, there is no need to embed the
ASCII as binary, bit per bit, into each pixel value. This is
because the “bottom” part of the frequency domain will show up
less often, and because of that, embedding the raw values will
still not be noticeable to the naked eye. After embedding, the

Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

values will be transformed back into the spatial domain and
saved as an image.

 The following is some comparisons of the original image
(left) and the embedded image (right):

 Similar to the FFT embedding, the difference of the
embedded image and the original image is not noticeable to the
human eye.

IV. EMBEDDING ANALYSIS

First, we will try to detect for any anomalies from the
embedded image using Zsteg.

$ ls

azusachibi.jpg azusachibi_dct.bmp azusachibi_fft.bmp
pemaloe.png pemaloe_dct.bmp pemaloe_fft.bmp

$ zsteg azusachibi_fft.bmp

imagedata .. text:
"A<mG@gA8WUNeE@Q>;ESQX%"

b3,r,lsb,xY .. file: OpenPGP Public Key

b4,r,lsb,xY .. text: "`Pxu oPH"

b4,r,msb,xY .. text: "qYJ&JKYX4"

$ zsteg azusachibi_dct.bmp

imagedata .. text:
"A<[G@UA8EUNSE@?>;3SQF%"

b2,msb,bY .. file: OpenPGP Public Key

$ zsteg pemaloe_fft.bmp

imagedata .. text: "C \"N0)T9,[=-]@1Z;.O/)?!!9"

b4,r,msb,xY .. text: ["3" repeated 9 times]

$ zsteg pemaloe_dct.bmp

imagedata .. text: "!*\n!(\n! "

[=] nothing :(

We see that Zsteg is unable to find our embedded secret in
any of the images. Next, we will check the byte difference of the
original image and the embedded image. As we only modified
the red channel, it will be the only channel that we analyze.

We will use the following Python code to analyze the
difference:

from PIL import Image

import numpy as np

original =

Image.open('./images/azusachibi.jpg')

fft =

Image.open('./images/azusachibi_fft.bmp')

original = np.array(original)

fft = np.array(fft)

diff = []

for row_ori, row_fft in zip(original,

fft):

 diff.append([])

 for pixel_ori, pixel_fft in

zip(row_ori, row_fft):

 diff[-1].append(int(pixel_ori[0])

- int(pixel_fft[0]))

open('./diff/azusachibi_fft_diff.txt',

'w+').write(str(diff))

The following is a snippet of the difference of the FFT
embedded image and the original image:

Makalah Tugas IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

 We see that even though we embedded the images using full
bytes directly into the FFT transformed dimension, the byte
difference on the red channel is distributed somewhat evenly
over the entire image, with small differences of the pixel values.
This method is thus harder to detect than embedding methods
that directly use the spatial domain.

V. CONCLUSION

 Frequency embedding works relatively well to hide secret
data into images. By transforming images into the frequency
domain first, then embedding the secret there, the secret is made
harder to detect as the byte difference created when embedding
the secret is spread evenly when transforming the image back to
the spatial domain

 Moving forward, the embedding method may be improved
by encrypting the data first before embedding it. Other than that,
it may also be improved by using the imaginary part of the FFT
frequency domain transformed image better, either to hide more
data or hide the tampering better.

CODE REPOSITORY

The implementation of the frequency image embedding and
its analysis can be accessed at Github using the following link:
https://github.com/dxt99/frequency-steganography

ACKNOWLEDGMENT

First of all, I thank God for giving me the chance to research
and write about this fascinating topic. I also thank the lecturer of
IF4073 Interpretasi dan Pengolahan Citra, Dr. Ir. Rinaldi Munir,
M.T., that have encouranged and guided us to write this paper.

STATEMENT

 I, Frederik Imanuel Louis, hereby declare that this paper is
written originally by myself, and is not a translation, a copy, or
plagirized from any sources

Bandung, December 18 2023

 .

Frederik Imanuel Louis

REFERENCES

[1] Munir, Slide Kuliah IF4073 Interpretasi dan Pengolahan Citra
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-
2024/citra23-24.htm

[2] Zsteg, Available: https://github.com/zed-0xff/zsteg

[3] Munir, Steganografi dari Kuliah IF4020 Kriptografi, Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-
2023/08-Steganografi-Bagian1-2023.pdf

https://github.com/dxt99/frequency-steganography
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-2024/citra23-24.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-2024/citra23-24.htm
https://github.com/zed-0xff/zsteg
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-2023/08-Steganografi-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-2023/08-Steganografi-Bagian1-2023.pdf

